Home

Lesson 3: Advanced Solidity

Immutability of contracts

After you deploy a contract to Ethereum, it’s immutable, which means that it can never be modified or updated again.

The initial code you deploy to a contract is there to stay, permanently, on the blockchain. This is one reason security is such a huge concern in Solidity. If there's a flaw in your contract code, there's no way for you to patch it later. You would have to tell your users to start using a different smart contract address that has the fix.

But this is also a feature of smart contracts. The code is law. If you read the code of a smart contract and verify it, you can be sure that every time you call a function it's going to do exactly what the code says it will do. No one can later change that function and give you unexpected results.

External dependencies

What happens if another contract has a bug?

For this reason, it often makes sense to have functions that will allow you to update key portions of the DApp.

For example, instead of hard coding the CryptoKitties contract address into our DApp, we should probably have a setKittyContractAddress function that lets us change this address in the future in case something happens to the CryptoKitties contract.

pragma solidity >=0.5.0 <0.6.0; import "./zombiefactory.sol"; contract KittyInterface { function getKitty(uint256 _id) external view returns ( bool isGestating, bool isReady, uint256 cooldownIndex, uint256 nextActionAt, uint256 siringWithId, uint256 birthTime, uint256 matronId, uint256 sireId, uint256 generation, uint256 genes ); } contract ZombieFeeding is ZombieFactory { KittyInterface kittyContract; function setKittyContractAddress(address _address) external { kittyContract = KittyInterface(_address); } function feedAndMultiply(uint _zombieId, uint _targetDna, string memory _species) public { require(msg.sender == zombieToOwner[_zombieId]); Zombie storage myZombie = zombies[_zombieId]; _targetDna = _targetDna % dnaModulus; uint newDna = (myZombie.dna + _targetDna) / 2; if (keccak256(abi.encodePacked(_species)) == keccak256(abi.encodePacked("kitty"))) { newDna = newDna - newDna % 100 + 99; } _createZombie("NoName", newDna); } function feedOnKitty(uint _zombieId, uint _kittyId) public { uint kittyDna; (,,,,,,,,,kittyDna) = kittyContract.getKitty(_kittyId); feedAndMultiply(_zombieId, kittyDna, "kitty"); } }

Note: there is a security flaw with the above to be address below.

Ownable contracts

setKittyContractAddress is external, so anyone can call it! That means anyone who called the function could change the address of the CryptoKitties contract, and break our app for all its users.

We do want the ability to update this address in our contract, but we don't want everyone to be able to update it.

To handle cases like this, one common practice that has emerged is to make contracts Ownable — meaning they have an owner (you) who has special privileges.

Below is the Ownable contract from the OpenZeplin lib which is a secure and community-vetted contract:

/** * @title Ownable * @dev The Ownable contract has an owner address, and provides basic authorization control * functions, this simplifies the implementation of "user permissions". */ contract Ownable { address private _owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor() internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } /** * @return the address of the owner. */ function owner() public view returns(address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(isOwner()); _; } /** * @return true if `msg.sender` is the owner of the contract. */ function isOwner() public view returns(bool) { return msg.sender == _owner; } /** * @dev Allows the current owner to relinquish control of the contract. * @notice Renouncing to ownership will leave the contract without an owner. * It will not be possible to call the functions with the `onlyOwner` * modifier anymore. */ function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } /** * @dev Transfers control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }

Some notes on things we have not seen:

  1. Constructors: constructor() is a constructor, which is an optional special function that has the same name as the contract. It will get executed only one time, when the contract is first created.
  2. Function Modifiers: modifier onlyOwner(). Modifiers are kind of half-functions that are used to modify other functions, usually to check some requirements prior to execution. In this case, onlyOwner can be used to limit access so only the owner of the contract can run this function. We'll talk more about function modifiers in the next chapter, and what that weird _; does.
  3. indexed keyword: don't worry about this one, we don't need it yet.

So the Ownable contract basically does the following:

  1. When a contract is created, its constructor sets the owner to msg.sender (the person who deployed it).
  2. It adds an onlyOwner modifier, which can restrict access to certain functions to only the owner.
  3. It allows you to transfer the contract to a new owner.

onlyOwner is such a common requirement for contracts that most Solidity DApps start with a copy/paste of this Ownable contract, and then their first contract inherits from it.

The example code allows us to inherit from Ownable:

pragma solidity >=0.5.0 <0.6.0; import "./ownable.sol"; contract ZombieFactory is Ownable { event NewZombie(uint zombieId, string name, uint dna); uint dnaDigits = 16; uint dnaModulus = 10 ** dnaDigits; struct Zombie { string name; uint dna; } Zombie[] public zombies; mapping (uint => address) public zombieToOwner; mapping (address => uint) ownerZombieCount; function _createZombie(string memory _name, uint _dna) internal { uint id = zombies.push(Zombie(_name, _dna)) - 1; zombieToOwner[id] = msg.sender; ownerZombieCount[msg.sender]++; emit NewZombie(id, _name, _dna); } function _generateRandomDna(string memory _str) private view returns (uint) { uint rand = uint(keccak256(abi.encodePacked(_str))); return rand % dnaModulus; } function createRandomZombie(string memory _name) public { require(ownerZombieCount[msg.sender] == 0); uint randDna = _generateRandomDna(_name); randDna = randDna - randDna % 100; _createZombie(_name, randDna); } }

The code that we modify to ensure onlyOwner modifier code is used:

pragma solidity >=0.5.0 <0.6.0; import "./zombiefactory.sol"; contract KittyInterface { function getKitty(uint256 _id) external view returns ( bool isGestating, bool isReady, uint256 cooldownIndex, uint256 nextActionAt, uint256 siringWithId, uint256 birthTime, uint256 matronId, uint256 sireId, uint256 generation, uint256 genes ); } contract ZombieFeeding is ZombieFactory { KittyInterface kittyContract; function setKittyContractAddress(address _address) external onlyOwner { kittyContract = KittyInterface(_address); } function feedAndMultiply(uint _zombieId, uint _targetDna, string memory _species) public { require(msg.sender == zombieToOwner[_zombieId]); Zombie storage myZombie = zombies[_zombieId]; _targetDna = _targetDna % dnaModulus; uint newDna = (myZombie.dna + _targetDna) / 2; if (keccak256(abi.encodePacked(_species)) == keccak256(abi.encodePacked("kitty"))) { newDna = newDna - newDna % 100 + 99; } _createZombie("NoName", newDna); } function feedOnKitty(uint _zombieId, uint _kittyId) public { uint kittyDna; (,,,,,,,,,kittyDna) = kittyContract.getKitty(_kittyId); feedAndMultiply(_zombieId, kittyDna, "kitty"); } }

Gas

Gas is the fuel Ethereum DApps run on.

In Solidity, your users have to pay every time they execute a function on your DApp using a currency called gas. Users buy gas with Ether (the currency on Ethereum), so your users have to spend ETH in order to execute functions on your DApp.

How much gas is required to execute a function depends on how complex that function's logic is. Each individual operation has a gas cost based roughly on how much computing resources will be required to perform that operation (e.g. writing to storage is much more expensive than adding two integers). The total gas cost of your function is the sum of the gas costs of all its individual operations.

Because running functions costs real money for your users, code optimization is much more important in Ethereum than in other programming languages. If your code is sloppy, your users are going to have to pay a premium to execute your functions — and this could add up to millions of dollars in unnecessary fees across thousands of users.

Why is gas necessary?

Ethereum is like a big, slow, but extremely secure computer. When you execute a function, every single node on the network needs to run that same function to verify its output — thousands of nodes verifying every function execution is what makes Ethereum decentralized, and its data immutable and censorship-resistant.

The creators of Ethereum wanted to make sure someone couldn't clog up the network with an infinite loop, or hog all the network resources with really intensive computations. So they made it so transactions aren't free, and users have to pay for computation time as well as storage.

Note: This isn't necessarily true for other blockchain, like the ones the CryptoZombies authors are building at Loom Network. It probably won't ever make sense to run a game like World of Warcraft directly on the Ethereum mainnet — the gas costs would be prohibitively expensive. But it could run on a blockchain with a different consensus algorithm. We'll talk more about what types of DApps you would want to deploy on Loom vs the Ethereum mainnet in a future lesson.

Struct packing to save gas

Normally there's no benefit to using these sub-types because Solidity reserves 256 bits of storage regardless of the uint size. For example, using uint8 instead of uint (uint256) won't save you any gas.

But there's an exception to this: inside structs.

If you have multiple uints inside a struct, using a smaller-sized uint when possible will allow Solidity to pack these variables together to take up less storage.

Example code:

pragma solidity >=0.5.0 <0.6.0; import "./ownable.sol"; contract ZombieFactory is Ownable { event NewZombie(uint zombieId, string name, uint dna); uint dnaDigits = 16; uint dnaModulus = 10 ** dnaDigits; struct Zombie { string name; uint dna; uint32 level; uint32 readyTime; } Zombie[] public zombies; mapping (uint => address) public zombieToOwner; mapping (address => uint) ownerZombieCount; function _createZombie(string memory _name, uint _dna) internal { uint id = zombies.push(Zombie(_name, _dna)) - 1; zombieToOwner[id] = msg.sender; ownerZombieCount[msg.sender]++; emit NewZombie(id, _name, _dna); } function _generateRandomDna(string memory _str) private view returns (uint) { uint rand = uint(keccak256(abi.encodePacked(_str))); return rand % dnaModulus; } function createRandomZombie(string memory _name) public { require(ownerZombieCount[msg.sender] == 0); uint randDna = _generateRandomDna(_name); randDna = randDna - randDna % 100; _createZombie(_name, randDna); } }

Time units

Solidity provides some native units for dealing with time.

The variable now will return the current unix timestamp of the latest block (the number of seconds that have passed since January 1st 1970).

Solidity also contains the time units seconds, minutes, hours, days, weeks and years. These will convert to a uint of the number of seconds in that length of time. So 1 minutes is 60, 1 hours is 3600 (60 seconds x 60 minutes), 1 days is 86400 (24 hours x 60 minutes x 60 seconds), etc.

pragma solidity >=0.5.0 <0.6.0; import "./ownable.sol"; contract ZombieFactory is Ownable { event NewZombie(uint zombieId, string name, uint dna); uint dnaDigits = 16; uint dnaModulus = 10 ** dnaDigits; uint cooldownTime = 1 days; struct Zombie { string name; uint dna; uint32 level; uint32 readyTime; } Zombie[] public zombies; mapping (uint => address) public zombieToOwner; mapping (address => uint) ownerZombieCount; function _createZombie(string memory _name, uint _dna) internal { uint id = zombies.push(Zombie(_name, _dna, 1, uint32(now + cooldownTime))) - 1; zombieToOwner[id] = msg.sender; ownerZombieCount[msg.sender]++; emit NewZombie(id, _name, _dna); } function _generateRandomDna(string memory _str) private view returns (uint) { uint rand = uint(keccak256(abi.encodePacked(_str))); return rand % dnaModulus; } function createRandomZombie(string memory _name) public { require(ownerZombieCount[msg.sender] == 0); uint randDna = _generateRandomDna(_name); randDna = randDna - randDna % 100; _createZombie(_name, randDna); } }

Passing structs as arguments

You can pass a storage pointer to a struct as an argument to a private or internal function. This is useful, for example, for passing around our Zombie structs between functions.

The syntax looks like this:

function _doStuff(Zombie storage _zombie) internal { // do stuff with _zombie }

This way we can pass a reference to our zombie into a function instead of passing in a zombie ID and looking it up.

An example of adding some functions to view if the cooldown is up and the zombie is ready to attack + triggering the cooldown that both accept a pointer to a Zombie.

pragma solidity >=0.5.0 <0.6.0; import "./zombiefactory.sol"; contract KittyInterface { function getKitty(uint256 _id) external view returns ( bool isGestating, bool isReady, uint256 cooldownIndex, uint256 nextActionAt, uint256 siringWithId, uint256 birthTime, uint256 matronId, uint256 sireId, uint256 generation, uint256 genes ); } contract ZombieFeeding is ZombieFactory { KittyInterface kittyContract; function setKittyContractAddress(address _address) external onlyOwner { kittyContract = KittyInterface(_address); } function _triggerCooldown(Zombie storage _zombie) internal { _zombie.readyTime = uint32(now + cooldownTime); } function _isReady(Zombie storage _zombie) internal view returns (bool) { return (_zombie.readyTime <= now); } function feedAndMultiply(uint _zombieId, uint _targetDna, string memory _species) public { require(msg.sender == zombieToOwner[_zombieId]); Zombie storage myZombie = zombies[_zombieId]; _targetDna = _targetDna % dnaModulus; uint newDna = (myZombie.dna + _targetDna) / 2; if (keccak256(abi.encodePacked(_species)) == keccak256(abi.encodePacked("kitty"))) { newDna = newDna - newDna % 100 + 99; } _createZombie("NoName", newDna); } function feedOnKitty(uint _zombieId, uint _kittyId) public { uint kittyDna; (,,,,,,,,,kittyDna) = kittyContract.getKitty(_kittyId); feedAndMultiply(_zombieId, kittyDna, "kitty"); } }

Public functions and security

An important security practice is to examine all your public and external functions, and try to think of ways users might abuse them. Remember — unless these functions have a modifier like onlyOwner, any user can call them and pass them any data they want to.

We updated our code to ensure public functions that do not need to be are changed and updated the contract to check the zombie:

pragma solidity >=0.5.0 <0.6.0; import "./zombiefactory.sol"; contract KittyInterface { function getKitty(uint256 _id) external view returns ( bool isGestating, bool isReady, uint256 cooldownIndex, uint256 nextActionAt, uint256 siringWithId, uint256 birthTime, uint256 matronId, uint256 sireId, uint256 generation, uint256 genes ); } contract ZombieFeeding is ZombieFactory { KittyInterface kittyContract; function setKittyContractAddress(address _address) external onlyOwner { kittyContract = KittyInterface(_address); } function _triggerCooldown(Zombie storage _zombie) internal { _zombie.readyTime = uint32(now + cooldownTime); } function _isReady(Zombie storage _zombie) internal view returns (bool) { return (_zombie.readyTime <= now); } function feedAndMultiply(uint _zombieId, uint _targetDna, string memory _species) internal { require(msg.sender == zombieToOwner[_zombieId]); Zombie storage myZombie = zombies[_zombieId]; require(_isReady(myZombie)); _targetDna = _targetDna % dnaModulus; uint newDna = (myZombie.dna + _targetDna) / 2; if (keccak256(abi.encodePacked(_species)) == keccak256(abi.encodePacked("kitty"))) { newDna = newDna - newDna % 100 + 99; } _createZombie("NoName", newDna); _triggerCooldown(myZombie); } function feedOnKitty(uint _zombieId, uint _kittyId) public { uint kittyDna; (,,,,,,,,,kittyDna) = kittyContract.getKitty(_kittyId); feedAndMultiply(_zombieId, kittyDna, "kitty"); } }

Function modifiers with arguments

Modifiers can take arguments, see the following:

// A mapping to store a user's age: mapping (uint => uint) public age; // Modifier that requires this user to be older than a certain age: modifier olderThan(uint _age, uint _userId) { require(age[_userId] >= _age); _; } // Must be older than 16 to drive a car (in the US, at least). // We can call the `olderThan` modifier with arguments like so: function driveCar(uint _userId) public olderThan(16, _userId) { // Some function logic }

We implemented our own version of aboveLevel to ensure there is no call to a zombie above or equal to a certain level:

pragma solidity >=0.5.0 <0.6.0; import "./zombiefeeding.sol"; contract ZombieHelper is ZombieFeeding { modifier aboveLevel(uint _level, uint _zombieId) { require(zombies[_zombieId].level >= _level); _; } }

To put everything into use, we then modified the code to allow a name change or new dna:

pragma solidity >=0.5.0 <0.6.0; import "./zombiefeeding.sol"; contract ZombieHelper is ZombieFeeding { modifier aboveLevel(uint _level, uint _zombieId) { require(zombies[_zombieId].level >= _level); _; } function changeName(uint _zombieId, string calldata _newName) external aboveLevel(2, _zombieId) { require(msg.sender == zombieToOwner[_zombieId]); zombies[_zombieId].name = _newName; } function changeDna(uint _zombieId, uint _newDna) external aboveLevel(20, _zombieId) { require(msg.sender == zombieToOwner[_zombieId]); zombies[_zombieId].dna = _newDna; } }

Saving gas with view fns

Our DApp needs a method to view a user's entire zombie army — let's call it getZombiesByOwner.

view functions don't cost any gas when they're called externally by a user.

This is because view functions don't actually change anything on the blockchain – they only read the data. So marking a function with view tells web3.js that it only needs to query your local Ethereum node to run the function, and it doesn't actually have to create a transaction on the blockchain (which would need to be run on every single node, and cost gas).

Note: If a view function is called internally from another function in the same contract that is not a view function, it will still cost gas. This is because the other function creates a transaction on Ethereum, and will still need to be verified from every node. So view functions are only free when they're called externally.

Our implementation (without implementing the function logic):

pragma solidity >=0.5.0 <0.6.0; import "./zombiefeeding.sol"; contract ZombieHelper is ZombieFeeding { modifier aboveLevel(uint _level, uint _zombieId) { require(zombies[_zombieId].level >= _level); _; } function changeName(uint _zombieId, string calldata _newName) external aboveLevel(2, _zombieId) { require(msg.sender == zombieToOwner[_zombieId]); zombies[_zombieId].name = _newName; } function changeDna(uint _zombieId, uint _newDna) external aboveLevel(20, _zombieId) { require(msg.sender == zombieToOwner[_zombieId]); zombies[_zombieId].dna = _newDna; } function getZombiesByOwner(address _owner) external view returns (uint[] memory) { } }

Storage is expensive

This is because every time you write or change a piece of data, it's written permanently to the blockchain. Forever! Thousands of nodes across the world need to store that data on their hard drives, and this amount of data keeps growing over time as the blockchain grows. So there's a cost to doing that.

In order to keep costs down, you want to avoid writing data to storage except when absolutely necessary. Sometimes this involves seemingly inefficient programming logic — like rebuilding an array in memory every time a function is called instead of simply saving that array in a variable for quick lookups.

In most programming languages, looping over large data sets is expensive. But in Solidity, this is way cheaper than using storage if it's in an external view function, since view functions don't cost your users any gas. (And gas costs your users real money!).

Declaring arrays in memory

You can use the memory keyword with arrays to create a new array inside a function without needing to write anything to storage. The array will only exist until the end of the function call, and this is a lot cheaper gas-wise than updating an array in storage — free if it's a view function called externally.

function getArray() external pure returns(uint[] memory) { // Instantiate a new array in memory with a length of 3 uint[] memory values = new uint[](3); // Put some values to it values[0] = 1; values[1] = 2; values[2] = 3; return values; }

Note: memory arrays must be created with a length argument (in this example, 3). They currently cannot be resized like storage arrays can with array.push(), although this may be changed in a future version of Solidity.

In our challenge, we had to return an empty array the length of the user's zombie count.

pragma solidity >=0.5.0 <0.6.0; import "./zombiefeeding.sol"; contract ZombieHelper is ZombieFeeding { modifier aboveLevel(uint _level, uint _zombieId) { require(zombies[_zombieId].level >= _level); _; } function changeName(uint _zombieId, string calldata _newName) external aboveLevel(2, _zombieId) { require(msg.sender == zombieToOwner[_zombieId]); zombies[_zombieId].name = _newName; } function changeDna(uint _zombieId, uint _newDna) external aboveLevel(20, _zombieId) { require(msg.sender == zombieToOwner[_zombieId]); zombies[_zombieId].dna = _newDna; } function getZombiesByOwner(address _owner) external view returns(uint[] memory) { uint[] memory result = new uint[](ownerZombieCount[_owner]); return result; } }

For Loops

A basic example of for loops:

function getEvens() pure external returns(uint[] memory) { uint[] memory evens = new uint[](5); // Keep track of the index in the new array: uint counter = 0; // Iterate 1 through 10 with a for loop: for (uint i = 1; i <= 10; i++) { // If `i` is even... if (i % 2 == 0) { // Add it to our array evens[counter] = i; // Increment counter to the next empty index in `evens`: counter++; } } return evens; }

The above will return [2, 4, 6, 8, 10].

In our case, we want to iterate through the zombies and see if the owner is the same and push the array ID to our result array that we are returning.

pragma solidity >=0.5.0 <0.6.0; import "./zombiefeeding.sol"; contract ZombieHelper is ZombieFeeding { modifier aboveLevel(uint _level, uint _zombieId) { require(zombies[_zombieId].level >= _level); _; } function changeName(uint _zombieId, string calldata _newName) external aboveLevel(2, _zombieId) { require(msg.sender == zombieToOwner[_zombieId]); zombies[_zombieId].name = _newName; } function changeDna(uint _zombieId, uint _newDna) external aboveLevel(20, _zombieId) { require(msg.sender == zombieToOwner[_zombieId]); zombies[_zombieId].dna = _newDna; } function getZombiesByOwner(address _owner) external view returns(uint[] memory) { uint[] memory result = new uint[](ownerZombieCount[_owner]); uint counter = 0; for (uint i = 0; i < zombies.length; i++) { if (zombieToOwner[i] == _owner) { result[counter] = i; counter++; } } return result; } }